Theoretical Search for RNA Folding Nuclei

نویسندگان

  • Leonid B. Pereyaslavets
  • Oxana V. Galzitskaya
چکیده

The functions of RNA molecules are defined by their spatial structure, whose folding is regulated by numerous factors making RNA very similar to proteins. Prediction of RNA folding nuclei gives the possibility to take a fresh look at the problems of the multiple folding pathways of RNA molecules and RNA stability. The algorithm previously developed for prediction of protein folding nuclei has been successfully applied to ~150 various RNA structures: hairpins, tRNAs, structures with pseudoknots, and the large structured P4-P6 domain of the Tetrahymena group I intron RNA. The calculated Φ-values for tRNA structures agree with the experimental data obtained earlier. According to the experiment the nucleotides of the D and T hairpin loops are the last to be involved in the tRNA tertiary structure. Such agreement allowed us to do a prediction for an example of large structured RNA, the P4-P6 RNA domain. One of the advantages of our method is that it allows us to make predictions about the folding nucleus for nontrivial RNA motifs: pseudoknots and tRNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search for folding nuclei in native protein structures

UNLABELLED The problem of finding folding nuclei (a set of native contacts that play an important role in folding) along with identifying folding pathways (a time-ordered sequence of folding events) of proteins is one of the most important problems in protein chemistry. Here we propose a novel and simple approach to address this problem as follows: given the topology of the native state, identi...

متن کامل

Finding Attractors on a Folding Energy Landscape

RNA sequences fold into their native conformations by means of an adaptive search of their folding energy landscapes. The energy landscape may contain one or more suboptimal attractor conformations, making it possible for an RNA sequence to become trapped in a suboptimal attractor during the folding process. How the probability that an RNA sequence will find a given attractor before it finds an...

متن کامل

Real-time control of the energy landscape by force directs the folding of RNA molecules.

The rugged folding-energy landscapes of RNAs often display many competing minima. How do RNAs discriminate among competing conformations in their search for the native state? By using optical tweezers, we show that the folding-energy landscape can be manipulated to control the fate of an RNA: individual RNA molecules can be induced into either native or misfolding pathways by modulating the rel...

متن کامل

INFO-RNA - a fast approach to inverse RNA folding

MOTIVATION The structure of RNA molecules is often crucial for their function. Therefore, secondary structure prediction has gained much interest. Here, we consider the inverse RNA folding problem, which means designing RNA sequences that fold into a given structure. RESULTS We introduce a new algorithm for the inverse folding problem (INFO-RNA) that consists of two parts; a dynamic programmi...

متن کامل

Predicting electrostatic forces in RNA folding.

Metal ion-mediated electrostatic interactions are critical to RNA folding. Although considerable progress has been made in mechanistic studies, the problem of accurate predictions for the ion effects in RNA folding remains unsolved, mainly due to the complexity of several potentially important issues such as ion correlation and dehydration effects. In this chapter, after giving a brief overview...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015